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Various generalizations of von Neumann's minimax theorem' have
been given by several authors (J. Ville,2 A. Wald,2 S. Karlin,2 H. Kneser,3
K.; Fan4). In all these theorems, the structure of linear spaces is always
present. This note contains some new minimax theorems involving no
linear space.

1. Let f be a real-valued function defined on the product set X X Y
of two arbitrary sets X, Y (not necessarily topologized). f is said to be
convex on X, if for any two elements xl, x2 eX and two numbers ti _ 0,
t2 _ 0 with t, + t2 = 1, there exists an element xo c X such thatf(xo, y) <
{if(xj, y) + W(x2, y) for all y e Y. Similarly f is said to be concave on Y,
if for any two elements yl, Y2 e Y and two n4mbers i7 > 0, m 2 0 with
1i1 + t12 = 1, there exists an yo e Y such thatf(x, yo) > tqf(x, yi) + 'ef(x, Y2)
for all x e X.
THEOREM 1. Let X, Y be two compact H4usdorff spaces and f a real-

valued function defined on X X Y. Suppose that, for every y e Y, f(x, y) is
lower semi-continuous (l.s.c.) on X; and for every x e X, f(x, y) is upper
semi-continuous (u.s.c.) on Y. Then:

(i) The equality

min max f(x, y) = max min f(x, Y (1)
xeX yeY yeY X eX

holds, if and only if the following condition is satisfied: For any two finite
sets {xI, X2, ... Ix, c X and {y], Y2, Y.Ym} C Y, there exist x0 e X and
yo c Y such that

i (XOI Yk) -< f(Xi, YO)n on X con, 1 < k < hod(2)
(ii) In particular, iff is convex on X. and concave on Y, then (1) holds.
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Proof: Observe first that, regardless of the condition stated in (i), the
expressions on both sides of (1) are meaningful. In fact, for each x e X,
f(x, y) is u.s.c. on the compact space Y, so that max f(x, y) exists. As

ye Y

maximum of a family of l.s.c. functions on X, maxf(x, y) is a l.s.c. function
ye Y

on the compact space X and therefore min max f(x, y) exists.
x X yey

(i) The necessity of the condition being trivial, we only prove its
sufficiency. According to this condition,

min max f(x, Yt) < max min f(xi, y)
ze X 1.k<m ye Y 1_i<n

holds for any two finite sets {x1, x2, ..., x,} c X and {Yl, Y2, * , Y.In C Y.
Then any real number a satisfies at least one of the two inequalities

min max f(x, Yk) < a, max min f(x1, y) > a-
x e XX1.km ye Y l!i<n

Let L(y; a) = {x eXjf(x, y) _ aJ1, U(x; a) = {y c Ylf(x, y) a}c wbich
are closed subsets of X, Y, respectively. Then for any real a and any
two finite sets {xI, x2, ..., xn} c 'X, {Y], Y2, ..*, Ym}I C Y, the two inter-

m n

sections n L(yk; a) and n U(x1; a) are never both empty. As X, Y are
k=1 i=1

compact, it follows that for any real a, at least one of the two intersections
n L(y; a) and n U(x; a) is not empty. That is, either there exists

y@ Y XeX
x0 E X such that f(xo, y) < a for all y e Y, or there exists yo e Y such that
f(x, yo) _ a for all x E X. In other words, any real a satisfies at least one
of the two inequalities

min max f(x, y) < a, max min f(x, y) > a.
XeX ye Y yeY zeX

Hence min max f(x, y) . max min f(x, y) and therefore (1).
Xfx yey yeY xeX

(ii) Assume now that f is convex on X and concave on Y. In order
to prove (1), it suffices to verify the condition stated in (i). Let IxXl x2,
...,IX. c X and {yl, Y2, ..., YnYm c Y be given. By von Neumann's
minimax theorem,' there exist two sets I1,~2, .*1* 772* 7..Irn* of

n mn

non-negative numbers with = 1, E k = 1 such that
i=l1 k=1

n nm

max I {1f(xi, Yk) min E 7kf (Xi, yk) (3)
1_k_m i=1 l<i_n k=1

Sincef is convex on X and concave on Y, there exist x0 E X, yo e Y such that

X

f(XOP Yk) _ E .if(Xi Yk), (1 _ k _ m) (4)
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f(xj, YO) ki'E kf (Xiy,) (1 < i . n) (5)
k=l

Then (2) follows from (3), (4), (5).
In (ii) of Theorem 1, we have an easily applicable sufficient condition

for equality (1): It can be used to provide simple proofs for minimax
theorems for infinite games (for instance, the generalized Ville's minimax
theorem as stated in our earlier note4 is a special case of part (ii) of Theorem
1). Since the proof of (ii) is based on von Neumann's minimax theorem,
its application in proving a minimax theorem for infinite games amounts
essentially to a reduction of the latter to von Neumann's theorem for
finite games.

2. Theorem 2 below generalizes Kneser's minimax theorem3 by elimi-
nating the structure of linear spaces. Theorem 2 also improves (ii) of
Theorem 1. Our proof of Theorem 2 is a modification of Kneser's proof
of his theorem.
THEOREM 2. Let X be a compact Hausdorff space and Y an arbitrary

set (not topologized). Let f be a real-valued function on X X Y such that,
for every y e Y, f(x, y) is l.s.c. on X. Iff is convex on X and concave on Y,
then

min sup f(x, y) = sup min f(x, y). (6)
xeX y.Y yeY xeX

Proof: Observe first that the expressions on both sides of (6) have mean-
ing, although their values may be + o. We divide the proof of (6) into
four steps:

(i) Let yo e Y be such thatXO = {x EX f(x, yo) < 0} is not empty. If we
replace X by XO, and restrict f on Xo X Y, then the hypothesis of Theorem 2
remains fulfilled.
We need only to verify that f restricted on Xo X Y is convex on Xo.

Let xi, x2 e Xo, and tI, 6 > 0, t1 + 62 = 1 be given. By convexity off on
X, there exists x0 e X such that

f(xo, y) < tlf(xI, y) + t2f(x2, y) for all y e Y. (7)
Since f(x1, yo) _ 0, f(x2, yo) < 0, the case y = yo of (7) implies f(xo, yo) _ 0,
i.e., xo e Xo.

(ii) If Iy1, Y21 c Yis such that

max f(x, Yk) > Ofor all x eX, (8)
k=1, 2

then there exists yo E Y such that

f (x, yo) > O for all x e X (9)

Let Xk = {x eXlf(x, Yk) _ 01, (k = 1, 2), which are disjoint closed
sets in X. We assume that none of them is empty (otherwise (ii) is trivial).
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We have -f(x, y') _ 0 and f(x, Y2) > 0 for x e X1, so that f(x, Y2) is u.s.c.
f(x, Y2)

and _O on X1. Let xi eX1and 1,u Obe such that

-f(x, Yi) -f(x,, Yi)
max =- = 1 (10)

xe f(X, Y2) f(Xl, Y2)

Similarly, let x2 E X2 and $2 > 0 be such that

-f(x, Y2) -f(X2, Y2)
max A2. (11)
Xf X2 f(x, Yi) f(x2, Y1)

We claim that Al1$2 < 1. To verify this, we may assume Al$2 0-

Sincef(x1, Yi) < 0,f(x2, Yi) > 0, we can find t1, t2 > 0 such that {i + 62 = 1

and

{if(xI, Yi) + t2f(X2, YI) = 0. (12)

f being convex on X, there exists xo e X such that

f(xo, y) < tlf(xI, y) + t2f(x2, y) for all y e Y. (13)

From (12), (13), we have f(xo, Yi) _ 0 and therefore, by (8), f(xo, Y2) > 0,

so that

0 < 61f(xI, Y2) + t2f(X2, y2).

Using (10), (11) and the fact I,u > 0, the last inequality may be written

6ff(Xl, Y) + $,$262f(X2, Y1) < 0,

which compared with (12) yields $1l2 < 1-
Take vP, v2 such that vI > JAI, v2 > $2, V1V2 = 1. Let

1 V2 PI =

1+1 / i

1

1+ PI + V2 1+ PI + P2*

Then

tlf(x, YI) + n2f(x, Y2) > 0 for all x e X. (14)

In fact, if x is not in X, u X2, (14) is trivial. If x e X1, we have 0 <

f(x, Yi) + ILf(x, Y2) < f(x, YI) + vLf(x, y2) = (1 + vI) [nf(x, YI) + n2f(x, y2)].
Similarly one verifies (14) for x E X2. Finally the existence of yo e Y with
property (9) follows from (14) and the concavity of f on Y.

(iii) If a finite set {Yl, Y2, . , Ym} C Y is such that

max f(x, Yk) > 0 for all x e X, (15)

then there exists yo e Y satisfying (9).
We prove this by induction on m. Let Xm = {x eXIf(x, Yi) < 0}.
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We assume that Xm is not empty (otherwise we take Yo = yi). By (i),
we can apply our induction-assumption tof restricted on X. X Y. Since
max f(x, Yk) > 0 for all x Xm, there exists Ym+i e Y such that

1.k.m-1
f(x, Ym+i) > 0 for all x e Xr. Then max f(x, Yk) > 0 for all x e X.

k=m, m+1
By (ii), there exists yo e Y satisfying (9).

(iv) For any real number a, either there exists an xo eX such that f(xo,
y) ._ a for all y e Y, or there exists an yo e Y such that f(x, yo) > a for all
x e X. (Therefore the right side of (6) is not less than the left side, and
consequently the two are equal.)
Suppose the first alternative is not true. Then n L(y; a) is empty,

ye Y
where L(y; a) = {x eXIf(x, y) < a}. As X is compact, there exists a

m
finite set {Yl, Y2, ..*, Ym} C Y such that n L(yk; a) is empty. That is,

k-i
max f(X, Yk) > a for all x e X. Then an application of (iii) to the

ISk;gm
function f - a shows that the second alternative is true.

3. The next theorem is free of topological structures. This is made
possible by generalizing von Neumann's almost periodic functions on a
group :" A real-valued function f defined on the product set X X Y of
two arbitrary sets X, Y (not topologized) is said to be right almost periodic,
iff is bounded onX X Y and if, for any e > 0, there exists a finite covering

m
Y = u Yk of Y such that jf(x, y') - f(x, y") < e for all x e X, whenever

k-i
y', y' belong to the same Yk. Left almost periodic functions are defined
similarly. However, every right almost periodic function on X X Y is
also left almost periodic and vice versa.6 Thus we simply use the term
almost periodic.
THEOREM 3.7 Letf be a real-valued almost periodicfunction on the product

set X X Y of two arbitrary sets X, Y (not topologized). Then:
(i) The equality

inf sup f(x, y) = sup inf f(x, y) (16)
XeX yeY ye Y xeX

holds, if and only if the following condition is satisfied: For any e > 0, any
two finite sets {x1, X2, .. . x4 C X and {yl, Y2, ..., Ym} c Y, there exist
XO EX, yo e Y such that

f(xo,Yk)-f(xi,yO)<e. (1<i n,1<k_m). (17)

(ii) In particular, iff is convex on X and concave on Y, then (16) holds.
Proof: We only prove the sufficiency part of (i). Consider an arbi-

trary e > 0. Let X = u Xi be a finite covering of X with the property
i=l
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corresponding to e required in the definition of left almost periodicity. Let
m

Y = u Yk be a finite covering of Y with the property corresponding to
k=1

e required in the definition of right almost periodicity. Let xi e Xi (1 <
i _n), Yk e Yk (1-< k im). Then sup f(x, y) _ max f(x, Yk) + e

ye Y 1.k_m
holds for all x e X; and inf f(x, y) _ min f(xi, y) - e holds for

X eX 1.i<n
y e Y.8 Hence

inf sup f(x, y) < inf max f(x, Yk) + C, (18)
x e X y e Y xeXX 1k_m

sup inf f(x, y) > sup min f(xi, y) - e (19)
ye Y XEX y e Y 1.i.n

Using our condition, there exist xo EX, yo e Y satisfying (17). From
(17), (18), (19), we get

0 . inf sup f(x, y) - sup inf f(x, y) _ 3e,
xeX ye Y yeY xeX

which holds for any e > 0. Thus (16) is proved.
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6 Let f be right almost periodic. Given e > 0, let Y = U Yk be a finite covering of Y

*k=1
with the property corresponding to e/3 required int he definition of right almost perio-
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nk

there is a finite covering X = U Xi(k) of X such that If(x', Yk) - f(x', y 1)- when-
i=1 3
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